

O IMPACTO DA MICROBIOTA INTESTINAL NO EMAGRECIMENTO: Uma Revisão Integrativa.

SUELLEN DE SOUZA OLIVEIRA E LUCITANA MARIA MARTINEZ VAZ

RESUMO

Cuida-se de uma revisão integrativa onde foram selecionadas 05 Meta-análises e 05 Estudos Randomizados Controlados que investigaram as consequências e benefícios de alguns filos e gêneros bacterianos presentes na microbiota intestinal de pessoas obesas versus pessoas magras. O objetivo geral foi investigar qual o papel da modulação intestinal no processo de emagrecimento de pessoas obesas. O levantamento dos estudos foi realizado nos meses de março e abril de 2023, os artigos disponíveis foram buscados nas seguintes bases de dados: LILACS e PUBMED. Os descritores utilizados para tal foram, nos idiomas português e inglês, com o operador AND: microbiota intestinal, inflamação, emagrecimento, modulação intestinal e disbiose. Os resultados da amostra são verificados em 10 estudos, sendo 05 Meta-análises e 05 Ensaios Clínicos Randomizados que foram baixados na íntegra e lidos para compor os resultados da presente pesquisa a fim de serem discutidos. Conclui-se que a modulação intestinal pode melhorar biomarcadores considerados pela Literatura universais para a obesidade. O aumento da diversidade microbiana intestinal pode ser provocado pela suplementação de algumas cepas ou até mesmo pelo estilo da dieta adotado como a dieta do mediterrâneo, a qual faz com que haja aumento de cepas importantes para biodiversidade microbiana tal qual a Akkermansia muciniphila, cujo nível, inclusive, se encontra reduzido em pessoas obesas. Portanto, a ausência de disbiose intestinal é o foco principal da modulação intestinal a fim de que haja beneficio no processo de emagrecimento de pessoas obesas visto que a promoção de uma maior diversidade diminui a inflamação, aumenta a barreira intestinal e reduz marcadores lipídicos e de inflamação.

Palavras-chave: microbioma intestinal; inflamação; obesidade; modulação intestinal; disbiose

1 INTRODUÇÃO

Vivemos uma pandemia de doenças crônicas não transmissíveis (DCNT) dentre estas a obesidade, a qual aumentou de 11%, em 2006, para 20% em 2022 (SBCBM, 2022).

A obesidade é uma doença multifatorial que pode ter como causa a disbiose intestinal assim como diversas outras patologias. Estudos recentes comprovaram que a microbiota intestinal (MI) da pessoa com obesidade difere da MI de pessoas estróficas (CARDINELLI et. al., 2014).

A disbiose caracteriza-se quando na microbiota intestinal há uma diminuição, alteração ou exacerbação das bactérias comensais, simbiontes e até as patogênicas, causando um desiquilíbrio entre os filos e gêneros mais comum em humanos (WAITZBERG, 2021).

Em 2003, o genoma humano foi sequenciado, onde foram registrados cerca de 23 mil genes, representando o material genético de 10% de nossas células, enquanto que sobre o

microbioma, em 2007, foram registrados cerca de 2 milhões genes microbianos, o que representa 90% de nossas células (WAITZBERG, 2021).

Desde então muito se tem investigado qual o papel da microbiota intestinal na obesidade, mas até então não está muito claro se a disbiose acarreta a obesidade ou a obesidade que causa a disbiose intestinal. Por isso, justifica-se a busca dessa indagação por meio do presente trabalho.

Sabendo que, de forma clara até aqui, o obeso possui uma microbiota intestinal diferenciada e pouco diversa, para seguir com a pesquisa, surgiu a questão norteadora: Qual o papel da microbiota intestinal no processo de emagrecimento em pessoas obesas?

Perante o exposto, o objetivo do trabalho realizado foi investigar qual o beneficio da eubiose da microbiota intestinal no processo de emagrecimento de pessoas obesas.

2 MATERIAIS E MÉTODOS

Trata-se de uma Revisão Integrativa. O levantamento dos estudos foi realizado nos meses de março e abril de 2023, os artigos disponíveis foram buscados nas seguintes bases de dados: LILACS e PUBMED.

Os descritores utilizados para tal foram, nos idiomas português e inglês, com o operador AND: microbioma intestinal, inflamação, obesidade, modulação intestinal e disbiose. Foram encontrados 1544 estudos, dos quais apenas 869 estavam disponíveis na íntegra gratuitamente. Quanto ao ano da publicação, somente foram incluídos os artigos publicados entre os anos de 2020 e 2023, ou seja, 499 artigos. Logo mais, foram selecionados somente artigos publicados com base nos métodos: Estudos Randomizados e Controlados e Meta-análises. Desta feita, foram selecionados 25 estudos. Entretanto, com base nos critérios de exclusão, foram excluídos 15 Ensaios Clínicos Randomizados em virtude de não possuírem compatibilidade geral com o objetivo do presente trabalho.

Restaram 05 Meta-análises e 05 Estudos Randomizados para compor a presente revisão.

3 RESULTADOS E DISCUSSÃO

Os resultados estão presentes na Tabela 1, onde são verificados 10 estudos, sendo 05 Meta-análises e 05 Ensaios Clínicos Randomizados que foram baixados na íntegra e lidos para compor os resultados da presente pesquisa a fim de serem discutidos sobre a microbiota intestinal de pessoas obesas.

Tabela 1: Seleção dos artigos científicos para revisão:

	Ano	Tipo de	Título	Objetivos	Principais resultados
		estudo			
A 1	2020	Meta-	Probiotic Strains	Explorar o padrão	As comparações mostraram uma
		análise	and Intervention	de administração de	associação positiva entre o grupo
					de
			Total Doses for	cepas probióticas e	probióticos versus placebo na
					redução
			Modulating	doses efetivas para	do IMC, colesterol total, leptina e
			Obesity-Related	distúrbios	adiponectina. Além disso, a
					estimativa
			Microbiota	relacionados à	negativa apareceu para glicose
					(FPG) e
			Dysbiosis: A	obesidade.	PCR. Enquanto os ensaios
					clínicos,

			Systematic Review		incluindo dados para capacidades
			and Meta- analysis		modulatórias positivas da microbiota,
					sugeriram que altas doses de Lactobacillus e Bifidobacterium comun
					s e multe espécies melhoraram os principais parâmetros relacionados à obesidade,
A2	2022	Meta-	Gut Microbiota	Esclarecer as	A avaliação de biomarcadores
		análise	Characteristics of	diferenças na	universais da microbiota intestinal em
			People with	diversidade e	indivíduos obesos pode ser aplicada
			Obesity by Meta-		para a previsão precoce e potenciais
				bacterianas fecais	alvos da microbiota intestinal para
			_	em pacientes com obesidade, (ii) identificar um	tratamentos adjuvantes da obesidade. No geral, identificou biomarcadores universais para predição
				conjunto universal de marcadores	de obesidade e alvos terapêuticos.
				microbianos para prever a obesidade	
A3	2022	Meta-	The association of	Revisar e	Cada kg de perda de peso foi associado
		análise	weight loss with		a um aumento de na diversidade α e
			gut	sistematicamente a	uma redução na permeabilidade
				associação entre	intestinal. Houve evidências claras de
				perda de peso e	aumentos na abundância relativa
			composition, and intestinal	intestinal	de <i>Akkermansia</i> , mas nenhuma evidência clara de mudanças em
			intestinai	mesima	filos
			permeability: a		individuais, espécies ou ácidos graxos
			systematic		fecais de cadeia curta. O aumento
			review		da
			and meta- analysis		perda de peso está positivamente
					associado ao aumento da α- diversidade da microbiota intestinal e à
					redução da

		1 1			permeabilidade intestinal.
A4	2021	Meta- (Gut Microbiome	Investigar com mais	•
					Bacteroidetes em adultos obesos
				-	foram observados, outros
					achados revelaram Firmicutes
					significativamente maiores e
				intestinal na	
					significativamente menores.No
		1	•		gênero, menos Bifidobacterium e
				menor diversidade e	
					Acidaminococcus,
				1 ,	Anaerococcus, Catenibacterium,
					Dialister, Dorea, Esc herichia-
				_	Shigella, Eubacterium,
					Fusobacterium, Megasph era,
					Prevotella, Negasph era, Prevotella, Roseburia,
					Streptococc us e Sutterella foram
					encontrados em adultos obesos.
					A heterogeneidade observada
					entre os estudos impede respostas
					claras.
A5	2022	Meta-	The effect of	Invectionr a eficácia	A meta-análise de dados de um
ΛJ	2022	análise			total de 26 RCTs ($n = 1536$)
		anansc		_	mostrou uma diminuição
					significativa na concentração de
			n on appetite-		leptina sérica/plasmática após a
				_	suplementação de
					probiótico/simbiótico. Além
			desire to eat: A		disso, a suplementação com
			systematic		probiótico/simbiótico foi
			review and		associada a um leve aumento no
			meta-analysis		desejo de comer.
			of clinical trials		desejo de comer.
A6	2021	Estudo	Serum	Identificar	Após 3 meses de suplementação
110	2021				de <i>Akkermansia muciniphila</i> vivo
			profiling yields		e pasteurizada, houve aumento do
		Controla			gasto de energia, consumo de
		do	\mathcal{C}		oxigênio e maior produção de gás
		uo			carbônico. Houve favorecimento
					de cetoses, perda de peso,
					, 1 1 1 1 1
			-	•	_
			volunteers with		diminuição da inflamação.
			. 1 11		
				insulina com síndrome	
			syndrome		
				metabólica.	

A7	2021	Estudo	Mediterranean	Invectioar se a dieta	A mudança de dieta ocidental
71/	2021	Randomi			para dieta mediterrânea fez
				os endocabinoides e	±
		Controla	-		muciniphila, afetando o sistema
		do	endocannabinoi		de endocanabinoides
		uo	d system in	,	independente da mudança de
			•	·	peso. Houve melhoramento da
				resistência à	-
			possible links		diminuição da inflamação,
			-		diminuiu a PCR e aumentou
			microbiome,	L	oleioletanolamida e
			insulin		palmitoiletanolamidas.
			resistance and		panintoneunoramidas.
			inflammation		
A8	2022	Estudo		Investigar se uma	Após 20 semanas de
110					suplementação e dieta com
					restrição calórica não houve
		Controla			efeito benéfico adicional além
		do			dos observados na dieta com
			rhamnosus	lipídicos em	restrição calórica, mas sem
			supplementatio	mulheres obesas	suplementação. Em ambos os
			n changes fecal	portadoras de SOP.	grupos houve perda de peso,
			short-chain		IMC, ácido acético, ácido
			fatty acid and		butírico, colesterol total, LDL e
			serum lipid		triglicerídeos.
			concentrations		
			in women with		
			overweight or		
			obesity and		
			polycystic		
			ovary syndrome		
A9	2020	Estudo		*	Dois grupos de 16 mulheres, um
					com alto nível de Akkermansia
			_		muciniphila (HAM) e outro com
		Controla	Associated with		baixo nível de Akkermansia
		do	-		muciniphila (LAM), este último
			1		tinha maior em índice de massa
			and Microbiota		gorda (46%) enquanto o primeiro
			Diversity in		com38% no início do estudo.
			Overweight and		

		with Breast	para posterio mastectomia	intestinal enquanto que o grupo LAM melhorou o nível de <i>Akkermansia muciniphila</i> devido as fibras presentes na dieta. <i>Akkermansia muciniphila</i> está associada a composição corporal e maior diversidade da
				microbiota e não está associada a interleucina-6.
A10	zado e	microbiota of a 1-y lifestyle intervention with Mediterranean	de uma intervençã intensiva para pero de peso no estilo o vida na microbio intestinal com	to Os participantes do Grupo de fointervenção tiveram uma perda de flapeso de 4,2 (IQR, -6,8, -2,5) kg deem comparação com 0,2 (IQR, -ta2,1, 1,4) kg no Grupo controle (Pa < 0,001). As reduções no IMC, glicemia de jejum, hemoglobina glicada e triglicerídeos e um aumento no colesterol HDL foram maiores no GI do que nos participantes do GC (P < 0,05). Houve diminuição de Butyricicoccus, Haemophilus, Ruminiclostridium 5 e Eubacterium hallii no GI em relação ao GC. Mudanças em Lachnospiraceae NK4A136 foram positivamente associadas com mudanças na adesão à dieta mediterrânea.

No que tange à diversidade bacteriana intestinal, todos os estudos de meta-análise foram unânimes em afirmar que a microbiota intestinal do obeso é mais pobre em termos de filos quando comparadas com a MI de pessoas magras.

Em relação aos filos bacterianos, há uma relação Firmicutes/Bacteroidetes em maior proporção nas pessoas obesas, as quais possuíam mais Firmicutes e menos Bacteroidetes do que as pessoas magras. Entretanto não ficou claro se essa relação seria a única explicação em termos de microbiota intestinal e obesidade tendo em vista que houve heterogeneidades dos gêneros na maioria dos estudos meta-analisados (PINART et al., 2021).

Segundo a Meta-análise de Noormohammadi et al. (2022) e o estudo randomizado controlado de Łagowska et al. (2022) a suplementação com algumas cepas (*Lactobacillus*, *Bifidobacterium e Akkermansia muciniphila*) demonstrou ser eficaz, mostrando benefícios quanto aos biomarcadores pois, após suplementação, foram avaliados alguns marcadores e houve redução de hormônios como a leptina, ácido acético, ácido butírico, colesterol total, LDL e triglicerídeos.

No entanto, evidenciou-se que a suplementação com probióticos, simbióticos mostrou aumento dos níveis de adiponectina principalmente em obesos com diabetes mellitus tipo 2 e síndrome metabólica. Também foi associado um leve aumento da vontade de comer com a suplementação acima citada (NOORMOHAMMADI et al., 2022).

Além desses, ficou evidente que, após a suplementação com *Akkermansia muciniphila* vivo e pasteurizada, durante 03 meses, houve aumento significativo do gasto de energia, do consumo de oxigênio e maior produção de gás carbônico. Houve também o favorecimento de cetoses, perda de peso, controle da glicemia e diminuição da inflamação (DEPOMMIER et al., 2021).

Ademais, uma das meta-análises traz como um dos pontos conclusivos e contundentes o aumento da perda de peso está positivamente associado ao aumento da α-diversidade da microbiota intestinal e à redução da permeabilidade intestinal. Houve evidências claras de aumento na abundância relativa de *Akkermansia muciniphila*, mas nenhuma evidência clara de mudanças em filos individuais, espécies ou ácidos graxos fecais de cadeia curta (KOUTOUKIDIS et al., 2022).

Três dos cinco Estudos Randomizados enfatizaram a dieta mediterrânea, rica em fibras e ácidos graxos monoinsaturados e poli-insaturados como capaz de aumentar a *Akkermansia muciniphila*, reduzir a inflamação, aumentar a diversidade microbiana além de promover melhor sensibilidade a insulina (FRUGÉ, et al.,2020; MURALIDHARAN et al., 2021 e TAGLIAMONTE et al., 2021).

4 CONCLUSÃO

Conclui-se que a modulação intestinal pode melhorar biomarcadores considerados pela Literatura universais para a obesidade. O aumento da diversidade microbiana intestinal pode ser provocado pela suplementação de algumas cepas ou até mesmo pelo estilo da dieta adotado como a dieta do mediterrâneo, a qual faz com que haja aumento de cepas importantes para biodiversidade microbiana tal qual a *Akkermansia muciniphila*, cujo nível, inclusive, se encontra reduzido em pessoas obesas.

Portanto, o equilíbrio ou ausência de disbiose intestinal é o foco principal da modulação intestinal a fim de que haja beneficio no processo de emagrecimento de pessoas obesas visto que a promoção de uma maior diversidade diminui a inflamação, aumenta a barreira intestinal e reduz marcadores lipídicos e de inflamação.

REFERÊNCIAS

CARDINELLI, C.S *et al.* Influence of intestinal microbiota on body weight gain: a narrative review of the literature. **Obesity Surgery**. São Paulo. Vol. 25. Num. 2. 2014. p.346-353.

DEPOMMIER, C. *et al.* Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. **Gut Microbes**. Vol.14, n.14, p.2993, 2022

FRUGÉ, A.D. *et al.* Fecal Akkermansia muciniphila Is Associated with Body Composition and Microbiota Diversity in Overweight and Obese Women with Breast Cancer Participating in a Presurgical Weight Loss Trial. **J Acad Nutr** . Vol.120, n.4, p. 650-659, 2020.

GONG, J *et al*. Gut Microbiota Characteristics of People with Obesity by Meta-Analysis of Existing Datasets. **Nutrients.** Vol.14, n.14, p.2993, 2022.

KOUTOUKIDIS, D.A. *et al.* The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis. **Gut Microbes**. Vol.14, n.14, p.2993, 2022

LAGOWSKA, K. *et al.* A low glycemic index, energy-restricted diet but not Lactobacillus rhamnosus supplementation changes fecal short-chain fatty acid and serum lipid concentrations in women with overweight or obesity and polycystic ovary syndrome. **Eur Rev Med Pharmacol Sci.** v.26, n.3, p.917-926, 2022.

LOPEZ-MORENO, A *et al.* Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-analysis. **Nutrients.** Vol.12, n.7, p.1921, 2020.

MURALIDHARAN, J. *et al.* Effect on gut microbiota of a 1-y lifestyle intervention with Mediterranean diet compared with energy-reduced Mediterranean diet and physical activity promotion: PREDIMED-Plus Study. **Am J Clin Nutr.** Vol.114, n.3, p.1148-1158, 2021.

NOORMOHAMMADI, M. *et al.* The effect of probiotic and synbiotic supplementation on appetite-regulating hormones and desire to eat: A systematic review and meta-analysis of clinical trials. **Pharmacol Res.** Vol.14, n.14, p.2993, 2022.

Obesidade atinge 6,7 milhões de pessoas no Brasil em 2022. **Sociedade Brasileira de Cirurgia Bariátrica e Metabólica.** Disponível em: https://www.sbcbm.org.br/obesidadeatinge-mais-de-67-milhoes-de-pessoas-no-brasil-em-2022/#:~:text=Dados%20do%20Minist%C3%A9rio%20da%20Sa%C3%BAde,milh%C3%B5es%20de%20pessoas%20no%20Brasil. Acesso em: 25 abril. 2023

PINART, M. *et al.* Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. **Nutrients.** Vol.14, n.14, p.2993, 2022

TAGLIAMONTE, S. *et al.* Mediterranean diet consumption affects the endocannabinoid system in overweight and obese subjects: possible links with gut microbiome, insulin resistance and inflammation. **Eur J Nutr.** Vol.60, n.7, p.3703-3716, 2021.

WAITZBERG, Dan L. Microbiota Intestinal: da disbiose ao tratamento/ Dan L. Waitzberg, Rafael Malagoli Rocha, Alan Hiltner Almeida. - 1. ed. - Rio de janeiro: Atheneu, 2021, p.87-89.