

O PAPEL DA DIVERSIFICAÇÃO DA MATRIZ ELÉTRICA BRASILEIRA PARA A DESCARBONIZAÇÃO

LUANA PINHEIRO GERALDO

RESUMO

Este artigo aborda a relação entre mudanças climáticas, o setor energético e a transição para uma matriz elétrica mais diversificada e de baixas emissões no Brasil. As mudanças climáticas globais resultam de variações significativas nos padrões de temperatura e clima, causadas por processos naturais e, principalmente, por atividades humanas que aumentam a concentração de gases de efeito estufa (GEE). O Sexto Relatório do IPCC reforça a conclusão de que as ações humanas são o principal fator de aquecimento global, evidenciando mudanças rápidas e abrangentes na atmosfera, oceanos e ecossistemas. As emissões de GEE desde a Revolução Industrial têm origem na queima de combustíveis fósseis, agropecuária, desmatamento e resíduos. O setor energético, um dos maiores emissores de GEE no Brasil, também sofre impactos das mudanças climáticas devido à sua dependência de recursos naturais. Com uma matriz elétrica majoritariamente renovável, o Brasil enfrenta desafios para manter a segurança do sistema diante das variações climáticas que afetam a disponibilidade de água, irradiação solar e ventos. A transição energética é essencial para mitigar as emissões de GEE e envolve uma mudança significativa na composição da matriz elétrica brasileira. Nas últimas décadas, houve uma evolução do setor, com a diversificação de fontes renováveis e o crescimento da energia eólica, solar e MMGD. Essa diversificação, impulsionada por políticas públicas e incentivos, visa aumentar a resiliência do sistema e reduzir a dependência da geração hidrelétrica. O artigo utiliza uma revisão bibliográfica para analisar o papel da diversificação da matriz elétrica na descarbonização do setor frente às mudanças climáticas. A transição energética no Brasil, impulsionada por metas de redução de emissões e pressões geopolíticas, requer políticas públicas que promovam a inserção de novas tecnologias limpas e investimentos em infraestrutura de transmissão. Com a maior participação de fontes renováveis, as emissões de CO2 por unidade de energia gerada diminuíram, embora o aumento do consumo energético no futuro possa elevar as emissões em termos absolutos.

Palavras-chave: Emissões; Gases de efeito estufa (GEE); Hidrelétrica; Eólica; Solar.

1 INTRODUÇÃO

As mudanças climáticas globais consistem em variações estatísticas significativas e a longo prazo, que ocorrem nos padrões de temperatura e do clima. Tais mudanças podem ser provocadas por processos naturais, como variações no ciclo solar, ou por mudanças antropogênicas na composição atmosférica devido altas concentrações de gases de efeito estufa (GEE).

Com o uso de tecnologias avançadas, novos métodos e evidências, o Sexto Relatório do IPCC (Painel Intergovernamental de Mudanças Climáticas), o AR6, evidenciou que apenas processos naturais não seriam capazes de gerar o aquecimento observado nos últimos séculos. Há anos já existe um consenso científico que atribui às atividades humanas o principal fator

para o aumento da temperatura da Terra. Entretanto, o IPCC afirma ser inequívoco e inquestionável que as ações humanas aqueceram o planeta, gerando mudanças rápidas e generalizadas na atmosfera, oceano, criosfera e biosfera.

As emissões antrópicas observadas desde a Revolução Industrial se dão principalmente pela queima de combustíveis fósseis para geração de energia, agropecuária, desmatamento e decomposição de resíduos.

O setor energético gera impactos e é impactado pelas mudanças do clima. Por um lado, possui importante responsabilidade sobre emissões de gases de efeito estufa (GEE), que são os grandes causadores da crise climática, sendo este o terceiro setor que mais emite no Brasil. Por outro lado, o país possui dimensões continentais e sua matriz altamente renovável é dependente de recursos naturais, sobretudo no setor elétrico. Tal dependência implica em maior vulnerabilidade destas fontes às condições climáticas e às variações da disponibilidade de recursos como água, irradiação solar e ventos.

A transição energética é um dos principais mecanismos para mitigação das emissões de gases de efeito estufa (GEE), os causadores das mudanças climáticas globais antropogênicas vivenciadas atualmente.

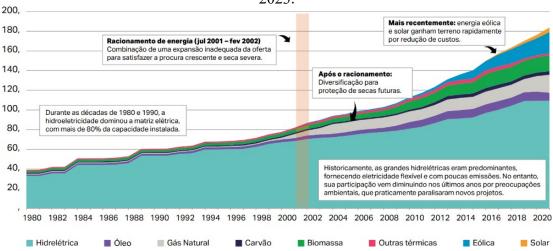
A matriz elétrica brasileira é composta majoritariamente por fontes renováveis e limpas, sendo diversa em sua composição. Durante as décadas de 1980 e 1990, as hidrelétricas dominavam a matriz, chegando a representar mais de 80% da sua capacidade instalada (CEBDS, 2022). A partir dos anos 2000, o setor passou por uma significativa evolução, sobretudo após o racionamento ocorrido em 2001, onde se buscou maior diversificação como proteção contra futuras secas. O cenário, com presença predominante de hidrelétricas, passou a incorporar fontes termelétricas de maneira crescente, visando aumento da segurança do sistema, e, posteriormente, novas fontes renováveis. A diversificação foi impulsionada por políticas públicas e incentivos que fomentaram a inclusão de energia eólica, solar e biomassa, além do aumento de térmicas a gás natural e pequenas centrais hidrelétricas (PCHs).

O presente artigo tem como objetivos principais contextualizar como é a matriz elétrica brasileira, transição energética e a diversificação da matriz, bem como observar como as emissões de gases de efeito estufa associadas à geração de eletricidade tem se comportado nos últimos anos.

2 MATERIAIS E MÉTODOS

O artigo foi elaborado baseado em revisão bibliográfica, visando a compreensão do papel da diversificação da matriz elétrica brasileira para a descarbonização do setor frente às mudanças climáticas. A metodologia adotada consistiu em uma análise abrangente de estudos acadêmicos, notas técnicas e documentos nacionais relevantes sobre o tema.

Para estruturar a pesquisa, foram seguidos os seguintes passos:


- Seleção de Fontes: Inicialmente, foram identificadas e selecionadas fontes relevantes entre artigos científicos, relatórios técnicos, diretrizes e publicações de instituições nacionais reconhecidas.
- Revisão da Literatura: Realizou-se uma revisão sistemática da literatura existente, com foco nos trabalhos mais recentes e relevantes. Esta etapa permitiu mapear o estado atual do conhecimento e identificar lacunas na literatura sobre o tema.
- Síntese das Informações: Após a coleta e análise das informações, foi realizada uma síntese dos principais achados. Esta síntese visa fornecer uma visão consolidada do papel da diversificação da matriz para a descarbonização.
- Elaboração do Artigo: Com base nas informações coletadas e analisadas, foi elaborado o artigo, estruturado de maneira a apresentar de forma clara e concisa os principais resultados e discussões derivadas da revisão bibliográfica.

3 RESULTADOS E DISCUSSÃO

O conceito de transição energética está associado às mudanças significativas na estrutura da matriz energética primária (MME, 2020).O processo atual de transição apresenta maior entrada de fontes renováveis e limpas na matriz energética, mais fortemente na matriz elétrica, e se dá por transformações em direção a uma economia de baixo carbono e com menor pegada ambiental.

Esse processo tem ocorrido fortemente no Brasil a partir dos anos 2000. A composição da matriz vem passando por muitas mudanças, tendo iniciado com uma composição majoritariamente hidráulica, posteriormente hidro-térmica e, nos últimos 15 anos, com desenvolvimento e crescimento das fontes eólica e solar.

Figura 1: Evolução da matriz elétrica no Brasil de 1980 a 2020 Fonte: PSR, 2023. CEBDS, 2023.

A composição diversificada da matriz brasileira fornece um portifólio robusto de tecnologias de geração, composto majoritariamente por fontes renováveis e de baixas emissões, considerando o potencial natural o Brasil. A expansão observada permite, ainda, a redução da dependência do sistema da geração hidráulica (CEBDS, 2022).

A operação do sistema elétrico brasileiro se dá por ordem de mérito, onde primeiramente são utilizadas as fontes de menor custo, que são renováveis. A conjunção desses fatores proporciona utilizar de forma mais otimizada fontes diversas no país.

A transição energética é essencial para a descarbonização e depende fortemente de políticas públicas que promovam a inserção de novas tecnologias limpas na matriz energética do Brasil (Pimentel; Parada, 2023).

O Plano Nacional de Energia (PNE 2050) aponta quatro dimensões que devem ser consideradas na construção de uma estratégia de descarbonização:

Tabela 1: Dimensões para uma estratégia de descarbonização

Energética	Uma política energética consistente para descarbonização deve priorizar a busca
	por fontes não emissoras e por maior eficiência energética.
Ambiental	O aproveitamento dos recursos energéticos deve minimizar os impactos
	socioambientais e respeitar a legislação vigente.
Econômica	As estratégias de descarbonização adotadas usualmente pelos países são associadas às trajetórias que atendam às suas respectivas prioridades econômicas.

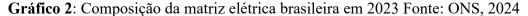
Tecnológica	Os países buscam trajetórias de descarbonização que estejam adequadas às
	potencialidades locais e seus contextos industriais e de desenvolvimento
	tecnológico.

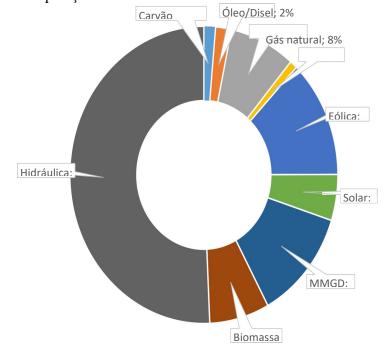
Fonte: Plano Nacional de Energia 2050

Ao mencionarmos a matriz elétrica, consideramos apenas o conjunto de fontes disponíveis e utilizadas para a geração de energia elétrica. Os gráficos abaixo mostram o comparativo entre a matriz elétrica global (2021) e a brasileira (2023).

Resíduos:

Solar térmica;
0,1%


Eólica; 7%


Geotérmica; 0,3%

Ninclaar

Petróleo e derivados;

Gráfico 1: Composição da matriz elétrica global em 2021 Fonte: IEA, 2023

De acordo com dados do Operador Nacional do Sistema Elétrico (ONS), em 2023 a matriz elétrica brasileira era composta por 87,8% de fontes renováveis, sendo 50,6% hidráulica, 5% solar, 12,1% micro e minigeração distribuída (MMGD), 12,8% eólica e 7,3% biomassa. Estima-se que até 2028 tais fontes representarão 90,5% da capacidade instalada da matriz, com destaque para o aumento das fontes eólica, solar e MMGD, que representarão 40% do total. Além disso, a previsão é de redução da representação de hidrelétricas na capacidade instalada do Sistema Interligado Nacional – SIN, chegando a 43,6%. Isso se dá devido à queda em investimentos para novas centrais hidrelétricas, além de a expansão ocorrer por usinas a fio d'água, que são desprovidas de reservatórios de regularização (CEBDS, 2022).

O gráfico abaixo compara o impacto da evolução da renovabilidade da matriz elétrica brasileira com as emissões de CO2 equivalente para a geração de 1 MWh.

160,0 95,0% 137,0 140,0 90,0% 118.5 120,0 101,3 104,4 85,0% 90,0 100,0 88,0 78,8 80,0 80,0% 60.0 75,0% 40,0 70,0% 20.0 83,3% 83,0% 84,8% 74.6% 75.5% 81,7% 80,4% 78.1% 87,9% 89,2% 0,0 65,0% 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Gráfico 3: Comparação entre o percentual de fontes renováveis na matriz elétrica brasileira e as emissões de CO2 equivalente para produzir 1 MWh

Fonte: Elaboração própria com dados do Balanço Energético Nacional (BEN)

Emissões (kg CO2eq/MWh)

■ % de renováveis na matriz elétrica brasileira

As emissões para a produção de 1 MWh tem apresentado queda ao longo da última década devido ao aumento da participação de fontes renováveis na matriz elétrica. Em 2021 o país enfrentou uma grave crise hídrica, a qual comprometeu a geração hidráulica. Tal fato justifica a menor renovabilidade e maior taxa de emissão observada nesse ano.

Apesar da baixa emissão por unidade de energia, de segundo o PNE 2050 é esperada que, com crescimento econômico sustentável no longo prazo para o Brasil, associado à redução do nível de pobreza, haja aumento do consumo energético per capita e, por consequência, aumento das emissões em termos absolutos para o setor de energia.

4 CONCLUSÃO

Os cenários projetados em fóruns internacionais, impulsionados tanto por metas de redução de emissões quanto por pressões geopolíticas, abrem novos caminhos e oportunidades para a transição energética no país.

O aumento da renovabilidade da matriz elétrica brasileira tem se dado por uma diversificação das fontes de geração. Tal fato possibilita maior otimização para o planejamento e operação do sistema, reduzindo a vulnerabilidade pelas variações de apenas uma ou poucas fontes. É possível, assim, aproveitar melhor o potencial natural do Brasil e ofertar robustez para o sistema, enquanto reduz-se as emissões do setor.

Com a maior proporção de fontes renováveis na composição da matriz elétrica, é

possível observar a redução das emissões por unidade de geração de energia.

Para a continuidade da transição energética, são necessários investimentos em transmissão. É através desses ativos que ocorre o escoamento da energia gerada, especialmente da produção renovável até os pontos de demanda. Em períodos de escassez hídrica, a transmissão se torna ainda mais relevante para garantia do atendimento da demanda, inclusive para a resiliência do sistema elétrico brasileiro.

REFERÊNCIAS

CEBDS - CONSELHO EMPRESARIAL PARA O DESENVOLVIMENTO SUSTENTÁVEL. **O setor elétrico brasileiro e as mudanças climáticas**. CEBDS, 2023. Disponível em: https://cebds.org/publicacoes/nota-tecnica-o-setor-eletrico-brasileiro-e-as-mudancas-climaticas/>.

EPE - EMPRESA DE PESQUISA ENERGÉTICA. **Balanço Energético Nacional 2024 - Ano base 2023**. Empresa de Pesquisa Energética (EPE). Rio de Janeiro, 2023a. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados abertos/publicacoes/PublicacoesArquivos/publicacao-819/topico-715/BEN S%C3%ADntese 2024 PT.pdf>. Acesso em: 2024.

IPCC – Intergovernmental Panel on Climate Change. IPCC Sixth Assessment Report. Disponível em: https://www.ipcc.ch/report/ar6/wg1/>

MME - MINISTÉRIO DE MINAS E ENERGIA; EPE - EMPRESA DE PESQUISA ENERGÉTICA. **Plano Nacional de Energia 2050**. Ministério de Minas e Energia - Secretaria de Planejamento e Desenvolvimento Energético. Brasília. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-227/topico-563/Relatorio%20Final%20do%20PNE%202050.pdf>. Acesso em: 2024.

ONS - OPERADOR NACIONAL DO SISTEMA ELÉTRICO. **Relatório Anual 2023**. Operador Nacional do Sistema Elétrico (ONS), 2023a. Disponível em: https://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/2023-Relatorio-Anual-acessivel 21032024.pdf

PIMENTEL, C.; PARADA, G. Descarbonização Econômica e Mudanças Climáticas: Instrumentos de Políticas Públicas para a Transição Energética. **Diálogos da Energia: Onze temas da transição energética**, São Paulo, pp. 10 – 14, 2023.